Paper published in Sustainability Journal about “Air Quality Monitoring Network Design Optimisation for Robust Land Use Regression Models”

The paper Air Quality Monitoring Network Design Optimisation for Robust Land Use Regression Models (by Shivam Gupta, Edzer Pebesma, Jorge Mateu, Auriol Degbelo) has been published in the special issue Spatial and Spatio-Temporal Planning for Urban Health and Sustainability of Sustainability 2018, 10(5)

Abstract: A very common curb of epidemiological studies for understanding the impact of air pollution on health is the quality of exposure data available. Many epidemiological studies rely on empirical modelling techniques, such as land use regression (LUR), to evaluate ambient air exposure. Previous studies have located monitoring stations in an ad hoc fashion, favouring their placement in traffic “hot spots”, or in areas deemed subjectively to be of interest to land use and population. However, ad-hoc placement of monitoring stations may lead to uninformed decisions for long-term exposure analysis. This paper introduces a systematic approach for identifying the location of air quality monitoring stations. It combines the flexibility of LUR with the ability to put weights on priority areas such as highly-populated regions, to minimise the spatial mean predictor error. Testing the approach over the study area has shown that it leads to a significant drop of the mean prediction error (99.87% without spatial weights; 99.94% with spatial weights in the study area). The results of this work can guide the selection of sites while expanding or creating air quality monitoring networks for robust LUR estimations with minimal prediction errors.

According to United Nations estimates, 66% of the total world population is expected to be living in the urban spaces by 2050. At the same time, the Organisation for Economic Co-operation and Development (OECD) projects that by 2050 air pollution will be the top environmental cause of mortality worldwide. GIS and spatial analysis have increasingly become an essential tool for air pollution monitoring. Interpolation of pollution data collected by regulatory air quality monitoring stations can help in regional patterns, but the air quality monitoring networks are very sparsely arranged to collect informed data at a city level. Land Use Regression (LUR) models are helpful to take into account air pollution variability within the cities. LUR models are a promising alternative to these conventional approaches as they establish the relationship between easily accessible land use characteristics and pollutant measurement. Our knowledge of air pollution monitoring is mostly based on limited data. The published paper takes a new look at Monitoring Network Design (MND) using a new optimisation method. The proposed method identifies the combination of locations which minimise the spatial mean prediction error over the entire study area for two contexts: (1) without using any weighted function; and (2) with a spatial population weighted function for high population density areas. The optimisation method does not rely on monitoring station data for monitoring site placement, thus giving independence for planning and readjustments of the optimal air quality MND for the cities with no or insignificant amount of air quality data. Hence, the proposed method can be a helpful tool in air quality MND that enables LUR estimations with fewer errors for preventing air pollution exposure and advancing urban health sustainability.

For more detail information, please access the article from here.

The article is Open Access and is funded by European Commission within the Marie Skłodowska-Curie Actions, International Training Networks (ITN), European Joint Doctorates (EJD). The funding period is January 1, 2015 – December 31, 2018, Grant Agreement number 642332 — GEO-C — H2020-MSCA-ITN-2014.

GEO-C ESR team won second place in the #NRWHackathon !

On February 27, 2016 in Düsseldorf, more than 80 participants including developers, researchers, administration officials, students, designers and programmers came together to create applications for “Education through Open Data”.

After a very interesting panel discussion from Claus Arndt (Moers), André J. Spang (Empress Augusta High School), Christian Dinnus (Open.NRW) and Hartmut Beuss (CIO NRW), the day unfolded into developing applications that use Open Data to educate children.

As participants, we selected our teams based on our interests and skills in the morning and worked all afternoon to develop those ideas as a group. It was a wonderful opportunity to get to work with new people and exchange ideas as well as improve them. I was part of the ”AmazingMapPeople”: an international team (Colombia and Germany) of eight people from two entities IFGI-Viderum-con terra as well as interested citizens.

Continue reading